Chapter 8    Double Pendulum Analysis (Part 3)
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8.1 Perfectly periodic behavior

This section describes examples of perfectly periodic behavior that occurred with m2=0.5 unless otherwise noted.  The next three slides show that perfectly periodic operation is fragile in the sense that the energy level must be exactly right to achieve it.  If either higher or lower the behavior quickly degrades becoming increasingly “quasi”.

Caution: The 30 degree run described above was initially judged as being perfectly periodic because I hadn’t let it run long enough to see that it was actually quasi-periodic.  That error may have been made in the runs described below.  I suspect that perfectly periodic runs do exist but only if the conditions are exactly right.  Its almost like an egg will balance on end but only if the conditions are exactly right.  These runs were fine tuned to some degree, but perhaps not to exactly the right point.  They got close to perfectly periodic at least over the time tested but they may be off a bit from the ideal.   

As noted these perfectly periodic runs were found by accident when a run at some round number of degrees happened to be close.  A1 was fine-tuned to see if it could be made even more perfectly periodic.  I found four in this phase of research: a1 set to 10.3, 30, 51.44 and 74.9 degrees.  There may well be other instances of perfectly periodic behavior over the systems full operating range from low to high energy.  A systematic search for them might be useful.  

Some of the screenshots from these run have been reported above.  We take a closer look at two here.  Still others with rather different initial conditions are reported in Section 8.3.  

Slide 29 shows a perfectly periodic run with a1 at 74.9 degrees, along with one lower energy run made at 74.8 degrees and a series of ever more energetic runs from 75.0 degrees upward.  Its readily apparent that the runs rapidly become more and more quasi, or chaotic if you will, as energy diverges above or below the ideal.  For comparison all these runs lasted about the same time, namely 65 seconds.  
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This is the KE waveform for the 74.9-degree run.  Note the symmetry around the valley at t=9.  
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and this is the angle 2 waveform:  Note the symmetry around the peak at t= 9 seconds.

[image: Macintosh HD:Users:richharkness:Desktop:DP per per wave.jpg]


Slide 30 makes the same point using another set of runs.  Note that perfectly periodic operation occurred with a1= 51.44 degrees.
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Slide 31 shows how the bottom run in Slide 30 evolved over time.  In the top frame the pattern had been traced twice and appeared to overlay quite well, but after 150 seconds (second frame) it had widened and after 300 (bottom image) it had widened still further.  Eventually the trace may fill the entire allowable area meaning that the peaks in the a1 waveform would have touched all possible values, which is one symptom of chaos, as seen in the classic bifurcation diagrams.  And because the phase space diagram and associated waveforms never repeat exactly the system is obviously aperiodic.  
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The runs in Slide 32 have almost the same initial conditions as those in Slide 31 except with a1 at 53.0 degrees they are slightly further from the perfectly periodic run at 51.44 degrees.  Compare the bottom image in Slide 31 which took 300 seconds to develop with the bottom image in Slide 32 which took only 102 seconds to develop.  The point here is to show that the pattern diverges faster the further one gets from the ideal needed for perfectly periodic operation. 
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NOTE: The runs below have very different initial conditions from most in this section.  They are included to show that perfectly periodic operation can probably be found with many different system configurations. The following perfectly periodic appearing run was discovered.  It was arrived after fine-tuning the run where a1=25 and a2=-25.   The pattern had been retraced about ten times when this screenshot was taken.  What notable is that the pendulum arms were synchronized in a 1:1 ratio so every time red swung once blue also swung once.  It makes common sense that if the arms swing in integer ratios perfectly periodic oscillation should result.  This may or may not be the reason for all perfectly periodic examples discovered in this research.  It merits further research. 
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Despite appearing nearly perfectly periodic when drawing ten complete patterns the single lines widened into bands as shown below at t=466.   

We do not have a definitive answer as to whether or not this run is perfectly periodic or quasi-periodic.  I’ve called runs, where the trace widens into a band like this or eventually filled the entire bee-hive shaped envelope as quasi-periodic.  However its possible that when it stays within the band -however wide-its perfectly periodic, albeit with a fairly long period.  Certainly its period is not 4 seconds, and probably not any small number either.  However it might be perfectly periodic with a period lasting 466 seconds during which it traced the bands below and this will be followed by another 466-second long period where it will retrace this exact pattern over again, and so forth.  Or we may be seeing a 233 second long period which has painted two identical patterns atop each other so far.  More observation and perhaps a look at the numerical values would be needed to resolve this ambiguity.  Meanwhile, rightly or wrongly, I’ve labeled runs like this as quasi-periodic.  

It serves as a caution about making premature judgments.  One should not judge a run as perfectly periodic without observing it a fairly long time and even then one might not have observed it long enough.  As things stand its not certain whether the trace will stay within these bands indefinitely or whether it will eventually fill a bee-hive shaped envelope as it has in many other long lasting runs.   I haven’t time to let it run longer to find out.
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8.2  Behavior as function of initial configuration

We wanted to see whether or not there is only one unique pattern of behavior associated with any given level of total energy regardless what position the arms or bobs are released from.  

To test this pairs of runs were made with the bobs in different positions but having the same total potential energy.  Because we were exploring a different issue here m2 was left at the default value of 1.0.

Some of these runs resulted in what appeared to be perfectly periodic operation but they were not run long enough to ensure the pattern wouldn’t eventually drift.  It is also notable that one run appeared to have the bobs swinging in a one to one ratio thus producing a very simple partial phase space plot.

The two screenshots below show the starting positions for the first pair tested, namely where a2 was 25 degrees versus -25 degrees upon release.  The upper bob obviously has the same PE in each run because its released from the same angle.  The lower bob also has the same PE because its raised the same amount -relative to hanging straight down below the upper bob- whether positioned left or right of it.  There is of course no KE at release. 
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The two screenshots below compare the patterns produced during the first 13 or so seconds.  Clearly they are very different.
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The screenshot below compare the patterns after about 34 seconds running.  The first appears as a single line since its behavior happened to be perfectly periodic.  
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Another pair of runs was made with a1 set to 40 degrees and a1 at either 20 or -20.  The results were the same.  Different patterns were produced.  A run with a1=40 and a2=-19.85 was perfectly periodic, at least for 53 seconds,  as shown below.
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Still two more equal energy runs were made with angle 1 set at 70 degrees.  Angle 2 was set at +60 for one and -60 for the other.  The screenshots below show two very different patters of behavior emerged from these different starting positions. 
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The two final runs to test this potentially important point were made with angle 1 at 80 degrees and angle 2 at 69 degrees and -69 so these runs would have the same energy.  Angle 69 was arrived at because a run near it appeared near perfectly periodic and with some experiment it was perfectly periodic at -69 as seen in the screenshot below. 
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The screenshot below captures the angle 1 vs. angle 2 behavior.  This was the simplest pattern of behavior observed during. several hundred runs.

At first glace when watching the bobs swing the arms appear to swing in a 1:1 ratio but closer inspection of the changing angle between the upper and lower arm makes that hard to determine.  More research is needed on this idea of swing ratios.
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The screenshot below shows the pattern from a run with the same total energy and rather than perfectly periodic it was obviously quite chaotic.  The bob went over the top perhaps a dozen time in 259 seconds.  Note how few loops there are at the top.  It was very rare for KE2 to reach those high values.  In other words curing chaos the very intense events happen rarely.  
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It was thought the notch at top would eventually fill in, and perhaps it would.  The sim was allowed to run about another 100 seconds to find out.  Just one new loop formed at the top.  Is visible on the left peak in the screenshot below.

Note also that the maximum value of KE2 in the 69 degree run, which was perfectly periodic, was almost the same as the peak value in the -69 degree run which was chaotic.  
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These runs show that the pattern of behavior is not uniquely determined by the total level of energy in the system.  At any given energy level the system can behave at least two -and probably a great many- different ways depending on the positions of the arms or bob when they are released.  In other words it can be inferred that each different combination of initial conditions –including not just bob position but also speed- will result in a different pattern of behavior even if all the different combinations have the same total energy.  

Because there is a different pattern depending on the starting configuration there might be a differently shaped strange attractor for each starting configuration as well.  Something related to this appears in a video at: https://www.youtube.com/watch?v=_xfi0NwoqX8




8.3 Sensitivity to initial conditions (SDIC)

Most technical definitions of chaos require that the system oscillate aperiodically AND show sensitive dependence on initial conditions or SDIC to be called chaotic.  
Strogatz says:  “Chaos is aperiodic long-term behavior in a deterministic system that exhibits sensitive dependence on initial conditions” (Ca2, p.323)
Wikipedia says: “Although no universally accepted mathematical definition of chaos exists, a commonly used definition originally formulated by Robert L. Devaney says that, for a dynamical system to be classified as chaotic, it must have these properties:[12]
1. it must be sensitive to initial conditions
2. it must be topologically mixing
3. it must have dense periodic orbits
I believe the double pendulum meets criteria 2 and 3, but I don’t understand those terms well and have ignored them.
In short I use this test:  aperiodic + SDIC = chaotic
SDIC means that very small changes in the initial conditions input to a simulation model before the simulation starts will magnify and greatly affect the results downstream.  This is often tested by making two runs of the model with slightly different initial conditions and comparing the waveforms they produce for some variable like arm angle or bob speed.  In my simulations I usually changed the release angle a1 just a bit between the two runs and compared the a2 or y2 waveforms, although it doesn’t matter which of the several variables (a1, a2, x1, x2, y1, y2, ke1 or ke2) is used.  If one shows SDIC effects so will the others.   This also means if one is perfectly periodic, quasi-periodic or chaotic the others will be so also.  If the system is SDIC the waveforms will diverge after time in that the shapes and heights of the waves will be different .  I call that an SDIC effect and annotated screenshots as to whether or not they show SDIC effects.

The image below shows how the red, green, and blue waveforms diverged in a run found in the literature.  I didn’t have access to this model for some reason.  It would have made my attempt to identify SDIC much easier.  Note how the waveforms are virtually identical for a while and then start to diverge rapidly at some time.  In section 8.3 I keep track of how long this takes at different energy levels.  
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Videos of two pendulums released from nearly the same position or animations are more intuitive than waveform plots in showing the effects of SDIC.  See for example
http://www.physics.usyd.edu.au/~wheat/dpend_html/  (The lower left animation resets to zero after running about 20 seconds.)  There are others on uTube.

When this section was first written the author was not aware of a Java simulation that would simultaneously plot the results of two double pendulums started with near identical initial conditions such as was used to make the image above.  If so I would have used it to further explore this concept and find the point or energy level where the double pendulum first becomes chaotic.   Instead I had to compare two separate runs to detect SDIC.  This work is presented below.  My SDIC testing for this section was done twice.  I present the bottom-line results of my second modeling first because its clean and gets to the answer right away.  Then I walk through my original efforts.

Second modeling:  Slide 99 show that SDIC first manifests –for this particular system configuration- when a1 equals 75.3 degrees.   The upper panels compare two runs made at 75 degrees and 75.01 degrees.  The waveforms looks identical meaning there are no signs that SDIC is present in the system at that energy level.  In contrast there are noticeable differences in the waveforms between runs at 75.3 and 75.31 degrees. The red arrows point to some I’ve highlighted.  These runs shows that SDIC first appears somewhere between 75 and 75.3 degrees, and that marks the boundary or transition into chaos.  

The specific problem with SDIC is that it makes the future of the system impossible to predict long-term even with a perfect model.  For example suppose we try to measure the initial angel and find its about 75 degrees, which puts us above the threshold and means the system is chaotic.  However our measuring instrument can’t tell if its 74.9, 75.0, 75.9 or something else in this narrow range.  If reality is 74.9 but we put 75.0 into the model we get two very different answers for say the value of angle2 150 seconds into the run and can’t know which is correct.  In effect SDIC magnifies small errors into large errors.  And those small errors can be very very small.  Inputting 75.000,000,000 degrees will produce a different answer than inputting 75.000,000,001.
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Some of the other runs made around the 75 degree angle have been described above, but its very curious that the system oscillated perfectly periodically at an energy level (75 degrees) just a tiny bit lower than the energy level (75.3 degrees) where it became chaotic for the first time.  Perfectly orderly behavior is immediately adjacent to chaotic behavior.  This happened again in the runs described in Section 8.3, which had a significantly different initial condition, namely m2 set to 1.0 rather than 0.5.   In addition to that the system first has enough energy to drive the blue bob over the top near that energy level.

I have not investigated these “coincidences”  but it seems significant and worthy of more research in the quest to understand the root cause of SDIC and of chaos.  The nearly perfectly periodic run is shown below.  It lasted long enough to give the trace a chance to diverge into a wide band and become quasi-periodic but since it didn’t I call it nearly perfectly periodic.  Probably fine-tuning would have made it more perfect. 
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Original modeling: What follows then is my original effort to detect SDIC.  My more sophisticate approach is documented in section 8.3.  Admittedly this is a bit redundant, but there may be some value in sharing the runs below.

The objective of the five runs below was to see if runs made with insufficient energy to cause dramatic events (blue going over the top rather than falling back) were significantly less sensitive to small differences in initial conditions than runs made with enough energy to cause dramatic events.  The runs above suggest that energies above angle 75.5 have just enough energy to cause going-over-the-top events.  Therefore the first two runs below were made at a lower level, namely 70 and 70.001 degrees.  The waveforms in the resulting screenshots below are remarkably similar even past 30 seconds.  This indicates these runs were not very sensitive to initial conditions within that first 30 seconds because the change of 0.001 degree had no noticeable effect.  As backup another two runs were made at 50 and 50.001 degrees.  They had identical waveforms until the runs were terminated at 21 seconds.  Later I found that it takes more time for the waveforms to diverge so these 70 degree runs didn’t last long enough to show SDIC, or that the system was sub-chaotic at 70 degrees.  

In contrast the runs at 80 degrees clearly showed SDIC
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The following three runs were made with enough energy to cause dramatic events, namely 80, 80.001 and 80.002 degrees.  Its obvious that all three runs were very sensitive to initial conditions since the waveforms after about 28 seconds running were completely different even though the angle was changed by only a very small amount.  Two had over-the-top events the third didn’t. 
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It seems logical that the waveforms would be much different after a dramatic event.  One hypothesis was that dramatic events are needed to cause waveforms to diverge.  However the waveforms in the last two runs above began to diverge after about 28 seconds even though no dramatic events had occurred.  In other words dramatic events are apparently not needed to trigger significant divergence in the waveforms, and systems can be very sensitive to initial conditions even if no dramatic events have occurred so far. 


8.4  Prediction of behavior 

One of the main reasons for studying system behavior is to see if and how future behavior can be predicted.  Its of academic interest re the double pendulum but of course important in regard to the weather, climate, ecosystem dynamics, economic and even socio-political systems.

Scientists have developed several methods to make short-term predictions about the future values of relevant variables in chaotic systems.  Baker and Gollub describe some of them.  (Ref Ca5, p.152+ (Baker and Gollub)).  I’ll not repeat them here but rather offer a few of my own ideas below.  

Short-term prediction of dramatic events:  
Chaotic oscillation is characterized by the random occurrence of spikes in the intensity of system variables.  In the real world these might show up as 500-year storms, insect epidemics, stock market crashes, or other disasters where some variable spikes in intensity.  Looking at chaotic waveforms these spikes appear to occur without warning.  In the double pendulum a spike occurs when enough energy is concentrated in the outer bob to cause it to go over the top or reach a very high speed or KE.  I therefore decided to see if there was any way to predict in advance when a spike, or in this case an OTT event, would occur.  Obviously this can’t be done very far in advance in a chaotic system but perhaps a short-term warning would be useful.  

Idea 1: Toward that end I examined the path taken by the outer blue bob just prior to a number of times it went over the top or got very close.  Slide 1 shows the results.
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These screenshots were all taken from one run lasting about 500 seconds. The blue trace captured final seconds of the blue bob’s “windup” just after it went over the top or began falling back. Those at left were when the bob almost went over the top but fell back, whereas those on the right it went over the top (OTT).  Can you tell from the shape of the windup trace whether it will go over the top far enough in advance to make a useful prediction?  Note that the red bob is always on the approach side when it goes over but rarely when it falls back.  

I won’t dwell on this but it does seem that there is a distinctive windup that occurs just prior to the blue bob going over the top.  If that windup had been seen before just before prior OTT events it might be possible- using pattern recognition software- to recognize that it was developing and therefore predict that another OTT event was iminant.  When you watch the actual pendulum you can often sense in advance if it will go over. 

Idea 2: In the real world it might be possible to revisit how a number of system variables had behaved before some natural disaster or economic shock to see if they show any consistent pattern before the event, and if so to watch for that pattern to develop again.  I realize the ability to do this, especially with economic systems, is problematic due to the fact so many variables are in play.  Weather and storm forecasters have other methods of course, but I put these thoughts out there in case anyone finds them useful.

Idea 3:  In the double pendulum there are only four places energy can reside: in the PE of each bob, and the KE of each bob.  We also know that one of these four will only reach its highest hight or fastest speed when the other forms are depleted of energy.  Perhaps its impractical to measure the blue bobs speed.  If so how might we predict when it seems destinated to peak momentairly?  If the other variables happen to be easier to track then one idea is to do so and see when they are nearing their minimums.  When they are then the forth variable will peak shortly. 

The screenshot below illustrates this situation.  Here the system has just a bit more total energy to get the blue over the top on occasion, which it was doing when this screenshot was taken.   Notice that the red bob is hanging straitht down and thus has no PE.  Red had vitually stopped and blue was going very slowly.   
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Medium term prediction: 
Medium term prediction of the system status, that is the waveform shapes and heights, are possible in a chaotic system if one has a good simulation model even if the initial conditions are not known accurately.  It was found during the SDIC tests in Section 8.3 that the waveform- when the system is chaotic-  only shows SDIC effects after the model has been running for a while.  Typically 7 to 50 seconds, which I call medium term in this case. 

As evidence I submit Slide 63 below.  Its clear that the waveform is almost identical for the first 14 seconds meaning that its possible to predict its shape and values that far even if the initial condition (ie: a1 is wrong by 0.01 degrees).   After that SDIC effects set-in and render a longer term forecast useless.  For instance notice the difference in the wave near t=16.   It’s the value of some variable at some specific future time that can’t be predicted.

If the system is quasi-periodic its obviously easy to predict that the general pattern of behavior, (like the shape of the ke2/a1 plot) will repeat each period but not exactly.  We can make that prediction simply by observing past behavior.  No simulation model is needed.  The heights of the wave crests and depth of the valleys will vary.  Its not clear to me whether the values drift consistently or randomly within the band seen in many ke2/a1 plots.  I simply hadn’t been observing that.  
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When the system is sub-chaotic long term forecasts are apparently possible even if the initial conditions are not known precisely.  Again assuming one has a good model.   Slide 74 illustrates this situation.  The waveforms are virtually identical near t=500 and only a very small difference shows up around t= 738.   

[image: ]

Its felt that these two charts convey the impact that chaos has on the ability to forecast better than most other displays.  Just imagine this were a weather forecast and the blue trace was the temperature.  In Slide 63 we wouldn’t know which forecast was right for say day 15.   

Long term prediction:  
Virtually every writing about chaos stresses that chaos is what makes long term forecasting of things like the weather impossible.  They are talking about the ability to predict a specific condition like rain or temperature on a specific future date. But when the system is chaotic a certain type of prediction is still possible.  Namely the chaotic nature of the waveform will continue.  The peak values will stay within limits constrained by the system geometry (the bobs can only go so high for instance) and by the total energy in the system (they can only go so fast).  There will be random periods where some variable changes little and moments when it spikes.  If there is sufficient energy the outer arm will spin over the top randomly.  

The weather is a good example.  Its chaotic but we can predict that there will be violent storms from time to time, dry spells, and that it will change randomly.  This is obviously a useful prediction because it suggests being prepared for extremes.

Comments made about prediction in quasi-periodic behavior medium term would seem to apply long term as well. 

Broader applicability: 
Being able to predict the behavior of simple systems like the double pendulum is probably meaningless in a practical sense unless it provides clues for how to predict behavior in much more complex natural and societal systems.   I discuss this more in Section 8.6 about broader implications, but for now think its impossible to predict more than a fraction of a cycle ahead in economic, and societal systems because they are most likely chaotic, buffered by the actions of other systems, and by unpredictable one time events like inventions.  But these systems change relatively slowly compared to a double pendulum where we are trying to predict hundreds of up-and down cycles ahead.  Maybe we only need to predict one cycle ahead, or even just a fraction thereof.

Within a cycle I think its possible to identify un-sustainable trends (like resource depletion, global warming, and population growth)  and predict they will eventually reach their limits causing the system to adjust or fail.  In addition I have an admittedly vague notion that there are mega parts in our ecological, economic, and social world that interact like the parts in mechanical system (like a double or triple pendulum, or a spring-mass network) and change in a way that creates megatrends.  Automation, information proliferation, globalization, and life-extending medical advances are mega-trends.  Its almost pure speculation but perhaps society only has so much energy to devote to these things and the amount devoted to each oscillates like energy does in the double pendulum.  If the parts in this mega-system could be identified, and the mega trends identified –and they were relatively few-- then perhaps a model of their interactions could be developed, and with it some useful predictions made.   Put another way if we consider automation, globalization, information proliferation, etc. all at the same time what does that imply for the future?  What scenarios can we “predict”?  How can society cope with all these mega-trends combined? 



8.5  Do synchronized swings produce perfectly periodic behavior? 

In at least some cases that’s true.

Logic suggests that if the two pendulum arms swing in a synchronized manner they should behave perfectly periodically.  If the upper and lower arms swung in a one to one ratio they would presumably end up in a mirror configuration at the left end of their swing to that which they had at right. For instance if the arms were aligned when released at far right they would be aligned again when they reached their high point at extreme left.  Thus the waveform going left should mirror that going right, and that should repeat on every swing thus producing a perfectly periodic behavior.  By the same logic if the lower arm briefly jogged left and right along the way but the final configuration at right mirrored that at left, this 2:1 swing ratio should produce a perfectly periodic behavior.  This suggests that any integer ratio of swings (2:3, 4:5 etc.) should result in perfectly periodic operation.

After some experimenting a couple nearly periodic configurations were found where the lower bob swung once while the upper bob swung once, at least as best the eye could determine.   With a1 fixed, angle 2 was adjusted to fine-tune these runs so they became as perfectly periodic as practical.  The screenshots below show these runs.  So far these runs support the notion that when the arms are synchronized perfectly periodic operation results. 
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Next an attempt was made to get the lower arm to swing twice while the upper arm swung once by halving the length of the lower arm.  It was perhaps naively suspected that halving its length would half its period, which would happen in a simple pendulum.  This was unsuccessful but did provide another perfectly periodic run with a 1 to 1 swing ratio.  The screenshot is below.
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It was then decided to see if halving the upper arm would produce a 2:1 ratio between swings, albeit with the upper bob swinging twice for each swing of the lower bob.  After some experimenting a perfectly periodic run was found that achieved that as best the eye can determine.  The screenshot appears below.  Note that the arm lengths have always been equal throughout the rest of this book, except in these runs.  When observed in motion the red bob made a short back and forth jog when the blue bob was near the extremity of its swing.
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The plot of angle 1 vs. angle 2 for this run appears below.  The fact that the inner bob swings back and forth once when both arms are near there left and rightmost position does not show up in the diagram but is visible when watching.  However the overall movement is more complex than expected and seems to show that the bobs do not return to the same initial position at the end of each swing.  
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These runs suggest it is feasible to achieve perfectly periodic operation if one bob has an integer ratio of swings relative to the other bob.  However more work is needed to confirm this.
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Slides 36 and 34 show some other runs with 1:1 and 1:2 swing ratios suggesting that there are many ways initial conditions can be set to achieve this result.
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 I looked closely at how the arms moved during a couple other perfectly periodic runs with the notion that the position of the arms when they were generally in the far right part of their swing would mirror that when in the far left.  That didn’t happen in these other runs.  The arms may have been synchronized in these runs but it didn’t manifest by the left-hand configuration mirroring the right-hand configuration on every cycle.  Perhaps it would have happened on some integer multiple of cycles, like every 3th, 4th, or 5th cycle.  It’s something else to investigate.  
  




8.6  Energy changes form and location

Energy is constantly changing form and location as the double pendulum moves.  

Energy within the double pendulum can be in two forms, potential and kinetic. Each bob contains potential energy depending on how high it is above the lowest point it can have.  The red bob has zero PE when hanging straight down.  The blue bob has zero PE when both bobs hang straight down.  Each bob has kinetic energy if moving.

When the bobs are lifted prior to releasing them at the beginning of a run the person lifting them expends energy doing so and that energy transfers to and adds PE to the system.  In other words a system in motionless equilibrium has no energy, and some must be added from outside to get it moving.  

The amount of energy added from outside is all the energy the system has.  Just before release its all in potential form because nothing is moving.  The law of conservation of energy says in this closed frictionless system the total amount of energy must remain constant.  If friction were present, which it is in all real-world systems but not in my double pendulum simulations, energy is drained off in the form of heat radiated from friction in the bearings and air turbulence.  

We know from observation the amount of potential energy each bob has varies because it moves higher and lower.  Its KE also varies because its speed varies. Sometimes it stops momentarily and has zero KE.  

One key point is that energy moves from part to part or place to place within a dynamic system like the double pendulum.  It oscillates back and forth between the forms and parts.  Disturbing one part in a connected system will end up disturbing other parts, akin to the way waves spread from a rock tossed into a pond.

Figure 89 illustrates how energy oscillates between it PE and KE forms within the double pendulum, and also how is oscillates between the two arms or bobs.  

  
[image: Macintosh HD:Users:richharkness:Desktop:Fig 89 revised .jpg]

The left end of Fig 89 shows that one hundred percent of the total energy in the system is in the form of potential energy PE when the bobs or arms are released because of course they aren’t moving.  Immediately after release PE starts converting into kinetic energy or KE.  When a bob swings as low as it can get its potential energy is zero.  This shows as a band in the diagram which narrows until it disappears. Likewise when a bob pauses to change direction its speed and thus kinetic energy momentarily reach zero.  The diagram illustrates a situation where there is barely enough energy in the system to cause the outer bob to swing over the top.  In this case most the energy in the system must flow into the outer bob to allow this.  It does this not only by lifting the outer bob but also giving it enough speed to swing it up over the top.  At the top where it goes over it reaches its maximum PE and may be going slow.  When the inner bob lifts the outer bob or causes it to move faster energy is transferred from the inner to the outer bob, thus we see the total amount of energy in each bob varies over time.

Figure 89 is one of the most important in the book because it shows that energy within a dynamic mechanical system is always oscillating between PE and KE, and also oscillating from one part to another.  In this context mechanical means a system made of parts with mass.  Pendulum arms, planets, atoms within molecules, etc.  I suspect energy oscillation (or the equivalent of energy) is characteristic of all dynamical systems like living organisms, social systems, ecological systems, etc., but I’m not ready to make that case yet.  

The waveforms and values in Figure 89 are purely illustrative.  It would be easy to enhance simulation models so they can make real plots like this. Absent that I present the results of several simulation models that show how energy changes form and location.  This is such an important point that I use data from other systems beside the double pendulum.  All show energy transfer from one part in a system to other parts.  In other words disturbing one part ends up transferring energy that disturbs all the rest.  Again this seems to apply to all sorts of systems, economic etc.  

Dooling model: Screenshots from the Dooling  models support Figure 89.  The UI doesn’t track all four forms/locations at the same time but three can be show as they are in the screenshot below.  If three are changing so must the forth (Ke1).  KE2 (kinetic energy of the outer blue bob) is plotted directly, and obviously changes per the waveform plotted.   In the lower right we see plots of Y1 and Y2.  Y1 is the height of the inner red bob and is directly proportional to its potential energy.  The maximum value it can have is two –because the arm length is one- and that happens when its straight up.   It was near that when the bob was released near one o’clock in this short run.  The plot shows it rapidly dropped to its lowest value of -1 when it swung around the bottom of its arc.  The outer blue bob reaches its maximum PE of 2 when both arms are straight up.  Its lowest value is -2 when both arms hang straight down.  

[image: Macintosh HD:Users:richharkness:Desktop:energy change.jpg]

The use of minus values can be a bit confusing.  The inner bob actually has zero potential energy when it reaches the bottom of its swing and has a “Y” value of minus one.  The outer bob has zero PE when its “Y” value is minus two.  Note that both bobs simultaneously reach zero PE at about t=0.8.  The blue bob has much less then than it has later so at this moment red must be going fast and have the bulk of total system energy.  

By careful inspection the traces behind the bobs in the upper diagram can be related to the dips and peaks in the other plots, as for example when the blue bobs KE hits zero when it reverses direction at the 9 o’clock position.

Newman double pendulum model: A screenshot from Newman’s model appears below.  At upper right it has a moving slider, which continually shows the percentage of total energy that’s PE vs. KE at any given instant.  Its fun to watch it move back and forth, showing that 100% of total system energy is occasionally potential and at other times potential.
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8.7  Energy concentrates and spikes

After two years studying chaos and writing this book it seem to me that the most interesting thing I’ve discovered about system dynamics is that the amount of energy in a part (PE or KE) can occasionally and randomly spike to unusually high values.  In a broad sense this means it has the PE to do something more rigorously than usual, or that it is actually doing so, going fast and having a high KE.  PE is like the energy in the atmosphere before the storm.  KE is the storm.  I’ll discuss this more when I discuss the broader implications of what we know about the behavior of these simple toy systems like the double pendulum.

The screenshots below prove that energy can concentrate and spike in the double pendulum.   Elsewhere I show that seems to happen in spring mass networks although the models I have access to don’t let me prove it numerically.


The three screenshot below show how this run was set-up.  The masses and arm lengths were equal.  (This differs from other runs in this section where the bobs had different masses.)   If both hang motionless straight down the system has no energy at all.  However if the red bob is lifted to a 90 degree position by setting a1 to 90 then it lifts the red ball one arm length giving it one unit of PE (the actual units are unimportant) This also raises blue one unit so it gets one unit of PE so the total system has two units of PE and zero KE since the bobs are still in the release configuration.  Its obvious in the third frame that blue must be lifted two arm lengths to reach the top and this will take two units of energy.  
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The screenshot below captures the actual run.  Angle 1 was set to 91 degrees, which is barely enough to power the outer bob over the top on occasion but just enough to keep it moving when it does.  At the top “y2”, the blue bobs vertical position would be zero in this model.

The geometry of the system prevents 100% of total system energy from ever concentrating in reds PE because when red rises it pulls blue up also.    



[image: Macintosh HD:Users:richharkness:Desktop:Blue get all energy.jpg]

The screenshot shows that the blue bob went over the top at about t=85.  At that point blue had two units of potential energy, which was nearly 100% of the total energy in the system.  In other words 100% of the total energy in the system was concentrated in the blue part, virtually all of it being PE.

The screenshot below shows how energy occasionally concentrates and spikes in the blue bobs KE.   However this plot doesn’t allow one to see what percent of the total it peaks at.   The red arrows indicate that when the bob was at the top (meaning y2=0) its ke had dropped to near zero.

These spikes will occur at random when the system is chaotic.  By way of the usual complexity associated with this subject energy also concentrates occasionally in spring mass systems, which are supposedly not chaotic since spring forces are linear.  Those examples were discussed in Chapter 5.
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Here’s a similar run that plots y2 over a longer duration.  Note the random isolated spike at t=75.

[image: Macintosh HD:Users:richharkness:Desktop:delay till 100% E goes to PE2 t=187.74.png]

Finally here is a highly chaotic run with far more energy than those above, enough so both bobs can rise above the main pivot point.  Note the relatively calm periods highlighted in green.  Note how they are randomly followed by intense spikes.  IF this sort of behavior is behind weather those spikes are intense storm, which can rudely end periods when folks have gotten complacent during mild weather. 
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Thus to emphasize:  Energy will occasionally concentrate and spike in one part of a double pendulum.  If the system is perfectly periodic it happens at regular intervals.  If the system is quasi-periodic it happens on more or less regular intervals.  If the system is chaotic it happens randomly and without warning.  When the energy being concentrated is potential the part has its greatest energy to do something, namely move.  It has maximum KE when moving fast.  Its felt this is a generalization applicable to other systems.  Put another way, PE is the ability or power to act, KE is the action. 


8.8  Implications of becoming capable of OTT events

Several runs were made to see if and how behavior, in terms of the waveform appearance, might differ if energy rose enough to cross a threshold where the system had enough energy to send the outer arm over the top (OTT) occasionally.  With a2=0, m2=0.5, and m1=l1=l1=1 that threshold was when a1 exceeded 75.3 degrees.  Slide 112 compares the waveforms at a1 angles below and above that threshold.  Although details differ there is little obvious difference in either the short term or longer term waveforms.  Anything coupled to this system or dependent on it would see much the same cyclic behavior.  

[image: ]  

8.9  Analysis of going-over-the-top event

This is explained in terms of a pendulum with solid arms rather than bobs.   Each pendulum arm moves in response to the forces being applied to it by gravity and by pushes and pulls from the other arm. 

Figure 80 illustrates the positions of two arms at a tipping point if the speeds are just right.  The question is whether the outer arm will rotate CW or CCW from this position.   
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Imagine first that –at this moment- the outer arm is moving laterally but not rotating around its center of mass because the bottom is being carried left by the inner arm (per the lower arrow) just as fast as the upper end is swinging left (per the upper arrow).  The lower end is accelerating left due to the pull of gravity but the upper end is also accelerating left.  Whether it begins rotating CW or CCW depends on whether the top speeds up more than the bottom or vice versa.  

This is not the only arm alignment that could become a tipping point.  It is easy to imagine it happening with a greater or lesser angle between them.  In all cases for the upper arm to reverse the positions and speeds must all reach what might be called a magic combination.


8.10  Summary observations 

These results assume the Java simulation model that produced them accurately models the behavior of a real double pendulum.  I have no reason to suspect it doesn’t.  If not they may be misleading.  Observed behavior was as follows:

1) The patterns produced by plotting KE2/a1 or a1 vs. a2 were complex meaning each bob swung back and forth several times before completing one pattern or period.  In other words the waveform within any given pattern was usually complex as opposed to a simple sinusoidal wave.
2) Behavior was always smooth with no abrupt changes. It was arguably rhythmic.
3) The shape of the patterns changed as the amount of energy was increased.  Although only samples were taken, it appears that one pattern gradual morphed into another.
4) Patterns got less orderly as the level of energy increased.  The KE2/a1 plot produced very orderly daisy shaped patterns at very low energy and less orderly patterns as the level of energy was raised toward chaotic levels.
5) The pattern –and thus the range of the values in variables like KE1, or a1- stayed within an envelope constrained by the level of energy in the system. As expected this envelope grew as the level of total energy was raised.
6) Throughout the entire energy range tested the sequence of moves made by the bobs almost never repeated exactly and thus the patterns produced by plotting KE2 vs. a1 or a1 vs. a2 over time never repeated exactly.  Episodes of perfectly periodic are exceptions.  However at energy levels below the chaotic threshold the general pattern of behavior –the general shape of the pattern- did repeat.  This is analogous to saying the pendulum moves like a dance consisting of several steps or moves taken in sequence, and then the sequence is repeated over and over.  However the steps and moves are not exactly the same size each time the sequence is repeated.  Rather they drift.  A period is the time it takes to go through this sequence of steps once.
7) Definitions of “aperiodic” behavior are not precise.  If not only patterns but also exact values must repeat for behavior to be called periodic and anything else is aperiodic then the double pendulum is aperiodic over its entire operating range, with the rare exceptions where it’s what I call perfectly periodic.  
8) At least in most cases the trace did not drift monotonically in one direction from one pass to another but rather often filled in between lines already drawn, as it does in the Lorenz butterfly.
9) Behavior (i.e.: the waveform) during one period was often symmetric around the midpoint of the period.  This means that within one period the trace would draw the pattern and then reverse to redraw it in the other direction.
10) The length of the period was roughly measured for each instance where the system was operating in a quasi-periodic or perfectly periodic manner.  It was measure as the time to complete one round trip through the pattern.  There was no apparent logic behind the readings obtained.  The measures were tricky to make.  If they were wrong they were probably off by a factor of 2 or 4.  That means a period said to be 17 seconds may have been one half of a period lasting twice that long, or one said to be 35 seconds was actually two 17-second periods misjudged as one.  As a result little emphasis was put on measuring period length.
11) This particular system configuration appeared to operate “perfectly periodically” at several narrowly constrained levels of energy.  Namely those where angle 1 was 10, 51.44 and 74.9 degrees. This perfectly periodic operating produced the same pattern with the same values time after time as best the eye could detect.  The plots appeared as crisp narrow lines since the trace wrote over them exactly multiple times.  This operation was narrowly constrained in the sense that even a very small deviation in the energy level degraded the system into what I call nearly periodic operation or quasi-periodic where each pattern was slightly offset from prior ones and the trace produced a wide line as opposed to a narrow one.  A run with a1=30 appeared to be perfectly periodic for some time but eventually the trace broadened into a band indicating it was actually quasi-periodic.  Thus very long runs are needed to confirm that a run is perfectly periodic.  
12) Its theoretically possible a run was operating perfectly periodically when I judged it only quasi-periodic.  That would be true if the real period –where behavior would repeat exactly- was considerably longer than these simulations lasted.  If so the actual period would consist of several of these quasi-periodic looking periods strung together. I feel this possibility is unlikely.
13) Deleted 
14) When energy was increased beyond a certain well-defined level the system transitioned from quasi-periodic operation to chaotic operation.  The dividing line in these runs here in Section 8.2 was between angle 1 = 75.0 and 75.3.  The patterns below that level were notably different from those above it.  (Compare the 167 second-long run at a1= 75.3 with the 165-second long run at 75.5)  The former had a reasonably regular shape the later did not.)  
15) There was a fairly sharp dividing line between runs that exhibited SDIC and were thus chaotic, and those that weren’t.  In this case it was very close (energy wise) to the boundary between energy level a1=75.0 and energy level a1=75.3 which also marked the boundary between runs where the outer blue bob goes over the top –in what I label a dramatic event- and those where it reverses just short of the top and falls back.  At a1=75.0 and below the bob never went over the top, apparently lacking the energy to do so.  At 75.5 the bob did go over the top on what seemed to be randomly occurring occasions.  Sometimes it went over two or more time in rapid succession.  Other times the spacing between such events was much longer. There was no consistency in these timings.  This is similar to when the Lorenz waterwheel reverses or when the trace in the Lorenz butterfly goes from one wing to the other.  As such it is probably the boundary between non-chaotic operation and chaotic operation, again depending on how chaos is defined.
16) The fact that this particular configuration had the boundary of chaos, the boundary for OTT behaviors, and a perfectly periodic run at very close to the same energy level near a1=75 degrees is notable.  It may or may not be significant. 
17) deleted
18) One rare occasion during a chaotic run the trace appeared to repeat the same pattern twice or even several time as though it had momentarily reverted to pattern periodic or even perfectly periodic behavior.  This behavior was hard to replicate and may have been an artifact introduced by pausing clearing the plot and resuming the model. We note that this is not like the islands of periodic operation found in the bifurcation diagram for the Logistics equation where the system reverts to periodic operation at certain “driving force” levels.   Here we may be seeing periodic operation interrupting chaotic operation all at the same energy level.  If this behavior can be confirmed it might be significant.
19) The chaotic runs at angle 75.5 started out behaving in an orderly “period periodic” manner before morphing into a chaotic manner after about 35 seconds.  Why this happened remains unclear.
20)  In several chaotic runs the trace departed the general pattern it had been tracing far enough to be noticeable reasonably close to the time it experienced a dramatic going over the top event.  It formed small loops outside the prior pattern.  Its perhaps possible that such behavior may provide short-term warning that a dramatic event is imminent.  Obviously any advance warning that a dramatic event is about to happen could be valuable.
21) Some runs were designed to show how energy moves within the system between the four forms it can take, namely the potential energy in each bob and the kinetic energy in each bob.  Thus plots of Y1 and Y2 (proxies for potential energy, and KE1 and KE2 were made.  It was apparent that the percentage of total energy in each form varied during these runs and that each form occasionally had zero energy, and occasionally had virtually all the energy in the system.  In other words sometimes all the energy in the system was kinetic, at other moments it was all potential.  Sometimes it concentrated in one part producing a spike it its PE or KE.  The spikes were randomly spaced in the chaotic runs.  
22) In these particular runs system behavior at energy levels below the threshold where dramatic OTT events are enabled is not very sensitive to initial conditions.   Above that threshold behavior is very sensitive to initial conditions.  Again this applies only to this particular configuration with the mass and arm lengths specified.
23) There was no notable difference in the waveforms when energy was below the level needed to produce occasional OTT events and that capable of doing so.
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Pre	OTT	warning?	
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Pa ern	comparison	test	for	

SDIC	at	105	degrees	

	

SDIC	is	clearly	visible	aer	14	

seconds	in	both	waveform	and	

trace	behind	bob.	
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SDIC	at	40	degrees	?	(a)		

No	waveform	divergence	or	SDIC		

before	about	t=738	
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periodic operation in
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Examples	of	perfectly	

periodic	operaon	in	

double	pendulum	

Note	that	somemes	angles	

needed	to	be	adjusted	carefully	to	

achieve	perfectly	periodic	

operaon.		If	not	operaon	

became	increasingly	quasi-

periodic.	
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Perfectly	periodic	runs	with	

1:1	and	1:2		swing	raos.	
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Slide	34		Two	runs	with	same	energy	

but	different	starng	configuraons	

These	are	also	perfectly	

periodic	with	1:1	swing	

raos.	
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This configuration is chaotic
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waveforms with m2

=0.5

and can go OTT with al>75.3
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Sub	and	post	OTT	capable	

waveforms	with	m2=0.5		

	

This	configuraon	is	chaoc	

and	can	go	OTT	with	a1>	75.3	
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Fragility of perfectly periodic operation in double

pendulum
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Fragility	of	perfectly	periodic	opera on	in	double	

pendulum	

Plot	of	KE2	vs.	a1	using	Dooling	

model.		Inial	red	number	is	a1	in	

degrees.		M2	=.5	L1	&L2	=1	in	all	

runs.		Started	at	t=0	and	run	unl	t	

equaled	value	noted	in	red.	

Waveforms	between	a1	

realease	angles	of	74.8	to	

75.4	degrees	
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