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5.1	Type	of	oscillation	is	determined	by	energy	in	system		
	
There	are	three	general	ways	a	system	can	oscillate:	perfectly	periodically,	quasi-
periodically,	and	chaotically.		At	least	as	far	as	the	double	pendulum	is	concerned	
the	total	amount	of	energy	in	the	system	determines	which	of	these	occurs.		
	
The	reason	this	matters	is	that	each	type	of	oscillation	differs	in	terms	of	our	ability	
to	predict	a	systems	future	behavior	based	on	historical	records	or	simulation	
models.		It	also	sets	the	conditions	which	anything	dependent	on	it	must	cope	with.		
For	instance	plants	must	cope	with	regular,	predictable	change	in	seasonal	light	and	
temperature.		If	we	look	at	broad	continent-wide	seasonal	averages	they	oscillate	
quasi-periodically.		At	local	levels	daily	temperatures	vary	chaotically.		
	
The	behavior	of	systems	other	than	the	double	pendulum	depends	on	total	energy	in	
the	system.		Clearly	that’s	true	in	laboratory	Raleigh-Benard	cells,	which	contain	
fluids	heated	from	below.		And	it	clearly	applies	to	the	Lorenz	waterwheel.	
	
Here	I	present	an	analysis	of	double	pendulum	behavior	to	support	what	I	suspect	is	
a	generalization	applying	to	all	dynamic	systems;	namely	that	the	level	of	energy	
within	a	system	dictates	its	behavior.		As	mentioned	above	the	physical	design	of	the	
system	also	dictates	behavior	but	for	any	given	physical	design	behavior	depends	
mainly	on	the	energy	level.		(Arm	positions	at	the	beginning	of	a	double	pendulum	
run	also	dictate	behavior	to	some	extent)	
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Slides	37	shows	the	partial	phase	space	plots	produced	by	a	series	of	simulation	
runs	made	at	different	release	angles	and	with	m2	set	to	0.5.		“a1”	was	the	
independent	variable	and	ranged	from	0.1	to	90	degrees	in	this	series.			At	this	point	
simply	note	that	the	patterns	of	behavior	was	different	at	different	energy	levels.		
Note	also	the	oscillation	in	some	runs	was	perfectly	periodic	(PP)	and	in	other	
chaotic	(C).		
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Slide	22	presents	the	same	information	for	a	second	series	of	runs	made	with	all	the	
same	initial	conditions	in	terms	except	m2	was	set	to	1.0.				
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When	friction	is	introduced	it	drains	off	energy	and	the	system	transitions	through	a	
range	of	behaviors.		Slide	5	illustrates	this.		The	first	25	seconds	were	clearly	chotic	
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as	boht	the	top	images	show.		At	some	point	it	became	quasi-periodic	and	stayed	
that	way	in	this	particular	run.		Note	how	the	intensity	of	the	oscillations	died	down.	
	

	
	
Figure	99	shows	that	systems	go	through	a	life	cycle	of	sorts.		It	starts	with	the	
individual	parts	far	apart	but	attracted	toward	each	other	by	some	force	so	they	
“fall”	toward	a	central	location.		In	terms	of	the	universe	the	big	bang	separated	all	
matter	and	its	essentially	been	falling	back	together	ever	since.		When	the	parts	get	
close	enough	some	repelling	force	will	slow,	stop	and	reverse	the	in-fall.		And	it	will	
leave	the	parts	oscillating	about	an	equilibrium	position.		Friction	or	its	equivalent	
will	dampen	the	oscillation	until	the	parts	come	to	rest	in	an	equilibrium	

Slide	5:			
Transi'on	from	Chaos	to	
Quasi-periodic	as	energy	
drops	



	

5-6	

configuration.		This	is	of	course	a	gross	simplification.		Still,	it	seems	to	apply	to	
galaxies,	solar	systems,	and	molecules.	
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Slide	87	summarizes	the	behavior	of	the	double	pendulum	as	a	function	of	total	
system	energy	in	more	detail.		Its	based	on	quite	a	few	simulation	runs	I	conducted.		
A	much	more	detailed	description	of	this	figure	and	the	runs	behind	it	are	presented	
in	Chapter	7.		Note	that	the	specific	numbers	on	this	chart	apply	only	to	a	double	
pendulum	with	the	bob	masses,	arm	lengths,	and	arm	release	angles	specified.		
Change	any	of	these	physical	constrains	and	the	same	general	diagram	will	probably	
apply,	albeit	with	different	numbers.		Recall	that	the	total	energy	is	determined	by	
how	high	the	bobs	are	lifted	before	they	are	released	to	start	a	run.		I	determine	that	
by	setting	angle	1	(a1).		I	explored	the	territory	by	making	runs	with	successively	
higher	values	of	a1.	
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The	general	message	conveyed	is	that	the	total	amount	of	energy	in	the	double	
pendulum	system	determines	how	it	behaves.			Key	points	are:	
	

a)	With	the	exception	of	very	narrow	windows	where	the	system	oscillated	
in	a	perfectly	periodic	manner	its	oscillation	was	always	aperiodic	as	shown	
by	the	arrow	at	right.	This	means	there	was	no	sequence	of	waves	that	ever	
repeated	perfectly	time	after	time.		If	there	had	been	the	duration	of	that	
sequence	would	be	called	a	period.	
	

Slide	87	
Behavior	summary	of	double	
pendulum	with	m2=1.0	
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b)			At	lower	energy	levels	(angle	1	under	66	degrees)	this	particular	system	
was	generally	what’s	called	quasi-periodic	meaning	that	there	were	
sequences	of	waves	that	looked	about	the	same	time	after	time	but	the	wave	
heights	weren’t	exactly	the	same	height	each	time.			
	
c)	At	66	degrees	there	was	a	sharp	break	in	behavior	between	quasi-periodic	
and	chaotic	because	at	all	higher	energies	the	system	had	a	condition	called	
sensitive	dependence	on	initial	conditions	or	SDIC.		Most	experts	agree	that	a	
system	must	have	SDIC	to	be	“officially”	labeled	as	chaotic.	
	
d)	The	final	major	point	is	that	at		a1=90	there	was	another	sharp	break	in	
behavior.		Below	that	energy	level	the	outer	arm	could	never	swing	over	the	
top	as	opposed	to	falling	back	like	a	backyard	swing	does.		Above	that	energy	
level	it	could	do	that	on	random	occasions.		This	qualitative	difference	in	
behavior	produces	what	I	call	“dramatic	events”.		Going	over	the	top	is	a	
dramatic	event.	
	
	

Perfectly	periodic	operation	produced	the	following	two	plots.		In	the	first	the	wave	
	

	
	
In	the	plot	below	the	trace	redrew	almost	exactly	the	same	pattern	many	times	over	
a	very	long	time.		Chapter	8.3	explains	why	it’s	not	possible	to	visually	determine	
whether	this	is	truly	perfectly	periodic	behavior	or	a	version	of	quasi-periodic	that’s	
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very	close	to	it.		It	came	down	to	judgment	call	on	my	part.		I	chose	to	call	this	
perfectly	periodic	,and	its	my	best	example	of	it.	
	

	
	
	

Quasi-periodic	operation	produced	the	following	plots:		In	the	first	screenshot	the	
waveform	between	t=0	and	t=37	seems	to	begin	repeating,	and	doing	so	every	37	
seconds.		But	we	can’t	tell	by	eye	whether	all	the	waves	or	peaks	are	exactly	the	
same	height.	
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This	is	a	longer-term	view.	
	

	
	
Its	much	easier	to	see	if	the	waveform	repeats	exactly	by	plotting	one	variable	
against	another.		If	so	each	new	pattern	will	lie	exactly	atop	the	prior	ones	thus	
staying	on	a	single	sharp	line.		But	here	we	see	that	each	pass	is	somewhat	offset	
from	the	prior	one	meaning	this	run	isn’t	perfectly	periodic.		If	run	long	enough	the	
trace	will	fill	the	entire	envelope.		The	amount	of	energy	in	the	system	determines	
how	large	this	envelope	is.			
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Quasi-periodic	behavior	can	also	produce	a	plot	like	the	following,	where	the	trace	
stays	within	a	band.		
	

Slide	32	
Quasi-periodic	
opera.on	
eventually	fills	
envelope		
	

This	is	similar	to	
chaos	where	each	
variable	eventually	
peaks	at	all	possible	
values	within	the	
range.	

Note	that	values	
dri>	faster	the	
further	run	is	from	
being	perfectly	
periodic.	I.E.:	
paCern	to	paCern	
dri>	is	greater.	
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Slide	26	shows	highly	chaotic	waveforms.		They	are	characterized	by	random	length	
periods	where	a	given	variable	oscillates	gently	and	then	spikes	to	a	much	higher	
value.		Green	bars	highlight	the	calm	periods.	
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Slide	58	compares	the	partial	phase	space	plots	for	two	runs	made	almost	at	the	
same	energy	level.		The	pair	with	a1=105	degrees	is	chaotic	but	just	over	the	
threshold.		It	visually	apparent	that	this	pattern	shows	no	sign	of	repeating.	It	
simply	looks	messy.		The	pair	with	a1=100	is	just	below	the	chaos	threshold	so	is	
called	quasi-periodic.		Nevertheless	its	fairly	messy	as	well.		These	runs	have	shown	
that	there	is	a	range	of	“quasiness”	which	spans	from	being	almost	perfectly	
periodic	at	one	extreme	to	being	almost	chaotic	at	the	other.			
	
I	haven’t	found	plots	like	these	for	other	systems	like	the	Lorenz	waterwheel	or	
Lorenz	equations.		Although	Stogatz	has	this	to	say	about	them:	

Slide	26:		Highly	chao1c	
waveform	in	double	
pendulum	

Green	bars	highlight	the	longer	calm	periods	
Y2	is	height	of	outer	bob	re	main	pivot	point	thus	propor8onal	
to	its	poten8al	energy	or	PE.		At	-2	its	PE	is	zero	

Note	random	occurrence	
of	spike	values	
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“What	happens	if	we	change	the	parameters?	Its	like	a	walk	through	the	
jungle	–one	can	find	exotic	limit	cycles	tied	in	knots,	pairs	of	limit	cycles	
linked	to	each	other,	intermittent	chaos,	noisy	periodicy,	as	well	as	strange	
attractors”	(Ca2	p’330)	

	
I	should	note	that	Strogatz	and	other	experts	do	not	often	link	behavior	directly	to	
energy.		Often	they	describe	how	behavior	changes	with	a	“driving	force”	or	a	
variable	called	the	Rayleigh	number.		Still	when	the	water	flow	to	the	Lorenz	
waterwheel	is	increased	it	must	increase	the	level	of	energy,	and	it	clearly	does	
change	behavior.		See	the	Strogatz	demo	at:		
https://www.youtube.com/watch?v=7iNCfNBEJHo			
	
Finally,	the	behavior	of	fluid	convection	currents	in	a	container	heated	from	below	
changes	depending	on	how	much	heat	is	applied.		The	topic	of	Rayleigh-Benard	cells	
or	convection	if	where	to	find	details	about	that.		There	are	also	uTube	videos	on	the	
subject.		
	
I	think	these	examples	adequately	support	my	conclusion	that	system	behavior	
depends	on	energy.		If	and	how	something	analogous	applies	to	economic	and	other	
societal	systems	is	TBD.	
	
	
	
	
5.2		Thresholds	to	chaos	and	dramatic	events	are	sharp		
	
I	can’t	say	this	is	a	generalization,	but	its	clearly	true	for	the	double	pendulum.		
What’s	meant	here	is	that	a	very	small	increase	in	energy	will	cause	the	double	
pendulum	to	switch	from	non-chaotic	operation	to	chaotic	operation.	A	separate	
small	increase	in	energy	will	enable	the	outer	arm	to	occasionally	go	over	the	top	as	
opposed	to	always	falling	back.		It	can	make	a	practical	difference	which	side	of	this	
threshold	the	system	is	on.		Whether	it	is	chaotic	or	not	affects	our	ability	to	predict	
its	future	state.		Whether	it	goes	over	the	top	or	not	is	of	course	of	no	practical	
consequence	but	a	change	in	behavior	like	that	might	hypothetically	affect	which	
way	some	ocean	current	circulates.		I’ll	expand	on	both	these	ideas	later.	
	
Its	easy	to	find	the	threshold	between	non-periodic	operation	and	chaotic	operation	
by	testing	for	the	presence	of	sensitive	dependence	on	initial	conditions	(SDIC).		
There	are	two	other	criteria	in	the	most	common	definitions	of	chaos,	but	that	
seems	to	be	the	one	most	relevant	here.		I	believe	the	double	pendulum	meets	the	
other	two.	
	
Double	pendulum:	One	tests	for	SDIC	by	making	two	computer	runs	with	almost	
the	same	initial	conditions	and	comparing	their	waveforms.	I	use	slightly	different	
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values	of	a1	which	correspond	to	slightly	different	energy	levels.		The	Dooling	model	
can	only	simulate	one	double	pendulum	at	a	time	so	one	must	compare	the	
waveforms	from	two	separate	runs.		The	ideal	model	would	simulate	two	
pendulums	and	plot	both	waveforms	at	the	same	time	for	easy	comparison.			
	
A	pair	of	runs	was	made	at	a	variety	of	ever-higher	energy	levels	until	one	became	
SDIC	and	thus	chaotic.					
	
Slide	106	show	the	results	of	a	test	for	SDIC	with	a1	=65	degrees..		Even	after	two	
very	long	560-second	runs	the	right	and	left	waveforms	appear	identical.		The	small	
0.01	degree	difference	in	initial	conditions	(	a1	and	thus	energy	level)	made	no	
difference	so	there	was	no	SDIC	at	this	energy	level.			It	also	turned	out	that	this	run	
was	perfectly	periodic.		This	happened	in	another	set	of	runs	as	well	raising	the	
possibility	that	the	double	pendulum	becomes	perfectly	periodic	just	prion	to	
becoming	chaotic.			
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Slide	105	shows	the	system	was	SDIC	when	a1	was	raised	just	one	degree	to	66	
degrees.		Because	it	was	SDIC	it	was	chaotic.		The	threshold	was	sharp	because	an	
increase	of	only	1	degree	–representing	a	small	change	in	energy	level-	was	
sufficient	to	shove	it	over.		
	
	
	
	

Slide	106	
Development	of	SDIC	
at	angle	65	
	

Stayed	perfectly	periodic	with	
no	SDIC	so	far,	thus	hasn’t	
become	chao?c.	

A2=0	m1=m2=l1=l2=1	

Period	was	about	14	seconds	

There	was	no	change	in	width	of	bands	
from	t=421	to	t=1200	
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Slide	99	shows	the	results	of	testing	a	different	configuration	in	that	the	mass	of	the	
outer	bob	was	doubled.			One	set	of	runs	was	slightly	below	the	chaos	threshold	the	
other	slightly	above.		The	precise	threshold	is	somewhere	in	between.		I	judge	that	a	
sharp	threshold	since	angle	one	only	differed	by	0.3	degrees.			
	
To	interpret	these	plots	look	first	at	the	top	two.		One	was	made	with	a1	at	75.0	
degrees	and	the	other	with	a	very	slightly	different	value	of	75.01	degrees.		SDIC	
would	have	amplified	the	effect	of	this	small	difference	making	the	waveforms	
diverge	over	time,	but	here	they	look	identical	as	best	the	eye	can	tell.		In	short	I	
judged	that	SDIC	was	not	present	at	this	energy	level.	In	contrast	the	waveforms	in	

Slide	105	
Development	of	SDIC	at	
angle	66	
	

Run	had	significant	SDIC	and	
thus	was	chao;c.	

A2=0	m1=m2=l1=l2=1	
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the	two	lower	runs	did	become	different	in	a	relatively	short	time.		The	red	arrows	
highlight	some	of	those	differences.		Note	here	we	are	talking	about	differences	in	
the	wave	height	(value	of	some	parameter)	at	some	specific	time.		That	what	we	
can’t	predict	if	a	system	is	chaotic.		The	general	nature	of	the	waveforms	are	similar.		
Both	oscillate	up	and	down	about	the	same	amount,	and	irregularly.		
	
	

		
	
Slide	38	also	shows	how	sharp	this	boundary	is.		At	75	degrees	the	system	was	not	
chaotic.		At	75.3	degrees	it	was.	
	

Slide	99	
SDIC	tests	
with	m2=0.5	

System	becomes	SDIC	and	
thus	chao:c	between	75.0		
and	75.3	degrees.	

A2=0,	m2=0.5,	li=l2=m1=1		drag=0	
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These	runs	and	many	more	associated	with	it	are	detailed	in	Chapter	7.	
	
Threshold	to	dramatic	events:		Below	a	certain	energy	level	the	outer	bob	of	the	
double	pendulum	will	occasionally	swing	up	near	the	top,	pause	for	a	moment	and	
then	reverse	and	fall	back	because	it	doesn’t	have	quite	enough	energy	to	go	over.		
Its	like	rolling	a	ball	up	a	round-top	hill	but	not	quite	fast	enough.		However	there	is	
a	point	where	it	has	just	enough	speed	and	energy	to	go	over	the	top	(OTT).		There	
is	a	very	small	difference	in	the	level	of	energy	where	it	falls	back	and	where	it	
occasionally	goes	over.		This	is	a	fairly	obvious	point.		I	think	the	Lorenz	waterwheel	

75.0		t=61.1	

74.4		t=60.4	
	

75.3			t=80.24	

75.5		t=72.65	

74.9		t=60.7	
Perfectly	Periodic	

En
er
gy
	L
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Slide	38	
Behavior	near	75	
degrees	in	double	
pendulum	

Can	go	OTT.	
Is	SDIC	and	
chaoJc.	

Can’t	go	
OTT.		Is	not	
SDIC	and	not	
chaoJc.	

Runs	with	a2=0	
m2=0.5	li=l2=m1=1	
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behaves	that	same	way.		At	some	sharp	energy	threshold	it	changes	behavior	
qualitatively.	
	
This	screenshot	is	from	a	89.9-degree	run	which	didn’t	have	quite	enough	energy	to	
send	the	blue	bob	over	the	top:	
	

	
	
This	screenshot	was	from	a	90.1-degree	run	that	had	slightly	more	energy	than	
needed	to	send	blue	over	the	top:	
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However	as	seen	below	it	hadn’t	done	so	after	a	fairly	long	run	lasting	486	seconds.		
The	system	must	–to	use	a	technical	term-	gyrate	around	until	it	reaches	the	magic	
combination	of	arm	positions	and	speeds	needed	to	transfer	over	99	percent	of	total	
system	energy	into	blues	PE	so	as	to	lift	it	high	enough.		The	remainder	gives	it	
enough	speed	to	go	over.		
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Raising	the	energy	just	a	bit	more	caused	it	to	go	OTT	three	times	in	the	following	
run.	
	

	
	
	
As	noted	elsewhere	if	an	important	real-world	system	went	over	a	threshold	that	
changed	its	behavior	in	similar	fashion	it	might	have	important	consequences.		This	
seems	potentially	relevant	as	global	energy	rises	due	to	global	warming.		Might	
there	be	some	natural	system	that	crosses	this	threshold	and	begins	behaving	in	a	
detrimental	way?		I	haven’t	looked	very	hard	for	a	potential	example	but	this	aspect	
of	systems	behavior	seems	worth	further	investigation.			
	
Experts	have	also	found	that	the	threshold	to	chaos	is	sharp.		The	iconic	bifurcation	
diagram	below	applies	to	the	population	or	logistics	equation.		The	lines	at	left	show	
that	system	oscillating	perfectly	periodically	whereas	the	shaded	areas	at	right	
indicate	chaos.		When	the	reproduction	rate	in	this	equation	reaches	about	3.6	the	
system	suddenly	becomes	chaotic.		The	complexity	of	this	diagram	shows	that	
systems	behavior	can	be	quite	complex	because	a	series	of	“period	doublings”	
precede	chaos	and	chaos	is	interrupted	by	windows	where	the	system	becomes	
periodic	again.		I	revert	to	the	simple	point,	namely	that	the	threshold	to	chaos	is	
sharp	and	occurs	when	some	parameter,	which	I	believe	generally	reflects	energy	
level,	is	raised	above	that	threshold.			
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The	image	below	shows	how	a	technical	measure	called	the	Lyapunov	exponent	
varies	as	the	release	angle	(i.e.:	energy	level)	of	the	double	pendulum	is	raised.		The	
system	suddenly	becomes	chaotic	when	the	line	goes	vertical	at	about	0.7	in	this	
diagram	from:			
http://psi.nbi.dk/@psi/wiki/The%20Double%20Pendulum/files/projekt_2013-
14_RON_EH_BTN.pdf		Most	experts	compute	the	Lyapunov	exponent	to	determine	
whether	a	system	is	chaotic	or	not.		I	didn’t	have	that	ability	using	the	Dooling	model	
so	needed	to	test	for	SDIC	instead.			
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This	is	sufficient	support	for	saying	that	the	threshold	to	chaos	is	sharp.				
	
	
	
5.3	Consequence	of	a	system	becoming	chaotic	
	
When	 increasing	 energy	 causes	 the	 double	 pendulum	 to	 cross	 a	 threshold	 and	
become	 chaotic	 nothing	 dramatic	 happens	 to	 the	 way	 it	 oscillates.	 	 This	 seems	
counterintuitive.	 	One	suspects	something	dramatic	would	happen.	 	 	To	investigate	
this	 I	 made	 some	 runs	 just	 above	 and	 below	 the	 threshold	 and	 compared	 the	
waveforms.		The	results	are	presented	below.	
	
Slide	109	compares	waveforms	of	the	double	pendulum	when	it	was	sub-chaotic	
and	quasi-periodic	in	a	run	with	a1	set	to	60	degrees	to	a	chaotic	run	made	with	a1	
at	70	degrees.		The	short-term	view	showing	just	a	few	cycles	shows	the	behavior	is	
virtually	identical.		The	system	oscillates	at	the	same	frequency,	the	waves	are	not	
sharper	or	more	rounded.		Their	heights	vary	about	the	same	amount	from	one	
cycle	to	the	next.			This	suggests,	not	proves,	that	the	transition	into	chaos	would	
hardly	be	noticed	in	the	short	term	by	anyone	depending	on	this	system.		
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At	first	glance	the	longer-term	behavior	doesn’t	seem	radically	different	either.		The	
peaks	and	valleys	grow	a	in	magnitude	but	that’s	because	the	level	of	energy	has	
changed.		The	frequency	remains	the	same.		The	heights	of	the	peaks	seem	to	vary	
about	the	same	percent.		However	close	inspection	shows	that	the	60-degree	(quasi-
periodic)	run	has	a	repetitive	pattern	which	produces	two	high	peaks	separated	by	
two	lower	ones,	then	two	highs	separated	by	one	low	and	so	forth.		In	contrast	the	
70	degree	run	is	much	less	consistent	because	it’s	chaotic.			
	
Slide	110	conveys	much	the	same	overall	message.		The	short-term	pattern	of	
behavior	is	much	the	same.		In	the	long	term	the	values	change	over	a	wider	range.	

Slide	109	
Sub-chao)c	vs.	chao)c	
x2	waveforms	
	

A2=0	m1=m2=l1=l2=1	

Chaos	threshold	is	66	degrees.		
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Next	it	was	decided	to	try	simulating	a	system	transitioning	thru	the	chaos	barrier	
during	a	single	run.	The	model	didn’t	support	the	gradual	addition	of	energy	but	it	
did	support	its	gradual	diminution	by	allowing	frictional	drag	to	be	included.		It	was	
assumed	that	the	transition	from	sub-chaotic	to	chaotic	would	be	a	mirror	image	of	
the	transition	from	chaos	to	sub-chaos.		We	know	that	the	system	was	chaotic	when	
started	at	70	degrees	and	since	the	overall	wave	height	dropped	to	less	than	it	was	
in	the	60	run	it	should	have	been	sub-chaotic	at	the	end.		Just	were	the	transition	
occurred	is	uncertain.		I	simply	marked	my	best	guess.		IF	this	represents	reality	
then	nothing	dramatic	would	happen	if	the	double	pendulum	had	enough	energy	

Slide	110	
Sub-chao)c	vs.	chao)c	
	ke2/a1	pa4erns	
	

Chaos	threshold	is	66	degrees.		
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added	to	make	it	chaotic.			Viewing	the	real	pendulum	gives	further	support	to	this	
finding.		Its	movements	change	in	a	smooth,	seamless	manner	as	it	slows	from	
wildly	chaotic	to	a	stop.			
	
	

	
	
The	following	run	started	from	a	still	higher	energy.		It	transitioned	the	threshold	
without	any	noticeable	impact	on	the	waveform.			
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IF	 these	 results	 apply	 to	 real-world	 systems	 it	 suggests	 there	 would	 be	 no	
drastic	and	 immediate	 change	 in	behavior	 if	 they	were	driven	 into	 chaos	by	
the	 addition	 of	 energy.	 	 	 I	 cannot	 reconcile	 this	opinion	with	 the	drastic	 change	
that	occurs	when	a	regularly	beating	heart	becomes	arrhythmic.	 	Perhaps	that’s	an	
entirely	different	situation.			
	
	
5.4	Consequence	of	qualitative	changes	in	behavior	
	
The	only	qualitative	change	in	behavior	investigated	in	this	book	was	when	the	
outer	bob	in	the	double	pendulum	swung	over	the	top	occasionally	as	opposed	to	
always	reversing	and	falling	back.		This	is	the	most	dramatic	thing	one	notices	when	



	

5-30	

watching	the	double	pendulum	so	I	often	call	going	over	the	top	(or	OTT)	a	dramatic	
event.		More	properly	it’s	a	qualitative	change	in	behavior.		Aside	from	the	visual	
impact	what	else	does	that	mean?		The	first	finding	is	that	it	brought	no	dramatic	
changes	to	the	waveforms.			
	

Slide	113	shows	the	results	of	examining	the	waveforms	above	and	below	the	
energy	level	needed	to	cause	occasional	OTT	events,	as	was	also	done	in	section	8.2.		
Again	no	significant	differences	were	observed.	
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Its	hard	to	imagine	the	equivalent	of	the	qualitative	change	in	behavior	or	dramatic	
event	described	above	in	an	important	real-world	system.		Again	I	think	it	deserves	
more	attention	than	I’ve	been	able	to	give	it.		What	first	occurred	was	to	wonder	if	
some	ocean	current	might	suddenly	change	direction	as	a	result	of	increased	energy	
due	to	global	warming.		I	briefly	considered	the	el	Nino	current	but	at	first	glance	it	
didn’t	seem	a	likely	candidate,	partly	because	it	seemed	capable	only	of	reversing	a	
bit	but	never	circulating	in	a	full	loop.				

Slide	113	
Sub	and	post	OTT	capable	
waveforms	with	m2=1	
	

This	configura=on	becomes	
chao=c	with	a1>66	and	can	go	
OTT	with	a1>90	



	

5-32	

So	I	can	only	leave	this	question.		This	double	pendulum	experienced	qualitative	
changes	in	behavior.		Does	such	behavior	apply	to	real-world	systems	like	ocean	
currents	or	ecological	systems?		

Finally,	note	that	it	might	not	make	any	practical	difference	to	the	system,	like	an	
ocean	current	if	it	does	something	dramatic	like	reversing.		What	might	be	
important	is	some	other	system	or	situation	that	rides	atop	that	system	and	is	
heavily	effected	by	it.		For	instance	if	the	Gulf	Stream	were	to	behave	differently	it	
would	greatly	effect	the	climate	of	northern	Europe.		I	suspect	the	Gulf	Stream	could	
be	affected	by	global	temperature	increases.		Its	apparently	also	affected	by	fresh	
water	run-off	from	Greenland.		

	
	
5.5		Prediction	is	relatively	easy	in	perfectly	periodic	and	
quasi	periodic	systems	

Perfectly	periodic:	If	a	system	is	isolated	from	outside	interference	and	perfectly	
periodic	then	predicting	the	exact	future	value	of	an	oscillating	variable	is	simple	if	
one	has	accumulated	a	historical	record	of	its	past	behavior	and	know	where	you	
are	on	the	waveform.			Its	obviously	equally	simple	if	one	has	an	accurate	model.		
The	best	example	is	our	ability	to	predict	things	like	sunrise	and	sunset	times	years	
in	advance.		

Quasi-periodic:		A	quasi-periodic	system	will	repeat	the	same	general	waveform	or	
the	same	general	phase-space	plot	time	after	time.		It	is	therefore	safe	to	say	it	will	
continue	doing	so	in	future	absent	any	outside	disturbances.		Slide	96	illustrates	
this.	
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First	note	that	the	waveform	at	upper	right	is	symmetrical	about	the	valley	at	t=10.		
If	one	has	observed	it	over	time	its	easy	to	use	a	waveform	like	this	to	predict	what	
it	will	do	in	future	in	terms	of	the	general	pattern	of	ups	and	downs	or	what	the	
waveform	in	a	given	cycle	will	look	like.		For	instance	we	know	the	shape	of	the	

Slide	96		
Quasi-periodic	
behavior	
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waveform	between	t=10	and	12	will	repeat	every	18	seconds	since	that’s	the	period	
in	this	particular	example.		And	the	longer	term	oscillations	seen	in	the	plot	just	
below	will	also	repeat	every	18	seconds.			

The	four	screenshots	at	left	show	that	the	general	pattern	of	movement	will	also	
repeat	but	the	values	will	drift	over	time	so	each	pattern	will	be	offset	from	the	prior	
ones	so	the	trace	eventually	fills	the	entire	dome	shaped	envelope.		I	oft	mention	
that	quasi-periodic	behavior	is	like	a	dance	comprised	of	a	sequence	of	steps	that	
repeat	over	and	over,	except	the	exact	length	of	each	step	varies.		

Now	to	the	screenshots	below.		To	further	clarify	suppose	the	pattern	shown	below	
did	repeat	every	13	seconds	and	we	were	measuring	the	variables	and	know	we	
were	at	point	A	on	the	pattern.		It	would	then	be	possible	to	predict	approximately	
where	we	would	be	at	any	future	time.		For	instance	every	13	seconds	we	would	be	
back	close	to	A,		but	not	precisely	at	A.		We	would	be	somewhere	along	the	red	line	
in	the	second	screenshot.			
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In	some	runs	quasi-periodic	traces	fill	the	entire	envelope	over	time	as	they	did	
above.		But	in	other	runs	they		remain	confined	in	a	band	as	shown	in	the	screenshot	
below.		This	run	lasted	466	seconds.		Long	enough	for	the	pattern	to	repeat	many	
times.		Its	not	certain	it	would	always	stay	within	this	band	but	in	any	case	we	can	
assume	it	would	for	a	long	time	thus	making	it	relatively	easy	to	predict	the	
approximate	value	of	a	variable,	and	of	course	the	overall	pattern	of	dance,	over	a	
long	time.		This	again	assumes	we	have	observed	past	behavior	long	enough	to	
know	the	system	stays	in	a	band.		

I	believe	tidal	heights	are	like	this.		They	oscillate	in	a	general	manner	over	a	lunar	
month,	but	stay	within	a	band.	
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5.6		short-term	prediction	is	possible	in	chaotic	systems	

Its	possible	to	make	accurate	short-term	predictions	of	the	future	value	of	some	
variable	when	a	system	is	oscillating	chaotically,	providing	one	has	a	good	model.		
This	is	something	all	experts	agree	on.	

Since	historical	records	show	no	periodically	repetitive	behavior	they	are	useless	
for	that	purpose.		However	historical	records	can	predict	that	the	general	behavior	
typified	by	random	calms	and	spikes	will	continue.		This	is	a	bit	trite	because	its	
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equivalent	to	saving	there	have	been	hurricanes	and	floods	in	the	past	so	there	will	
be	more	in	future.			

Slide	118	shows	that	it	is	possible	with	a	good	model	to	make	short-term	
predictions.		The	reason	is	that	it	takes	time	for	errors	in	estimating	initial	
conditions	to	begin	affecting	the	accuracy	of	forecasts.		

Consider	the	two	top	screenshots	made	with	a1	set	to	about	67	degrees.		Suppose	
our	measuring	instruments	aren’t	perfectly	accurate	so	we	don’t	know	if	the	true	
value	is	exactly	67	degrees	or	just	close,	like	67.01	for	instance.		We	need	to	input	
something	into	the	model	before	starting	the	simulation,	so	we	probably	put	in	67.		
Careful	comparison	shows	this	uncertainty	makes	no	difference	since	the	
waveforms	are	virtually	identical	for	the	first	48	seconds	of	this	run.		I	other	words	
with	this	model	we	can	accurately	predict	the	value	of	x1	(the	blue	trace)	for	the	
first	48	seconds	even	if	we	don’t	know	the	exact	value	of	the	initial	condition	a1	
precisely.		The	same	thing	holds	for	the	pair	of	runs	made	near	70	degrees.		

Experts	say	this	is	true	with	weather	forecasts.		They	can	be	fairly	accurate	a	few	
days	out.	

I	am	tempted	to	say	that	initial	errors	haven’t	had	time	to	magnify	enough	to	
become	noticeable	but	its	not	clear	they	actually	grow	from	the	beginning.		Instead	
they	seem	to	suddenly	appear	after	a	certain	time	has	elapsed.		This	is	treated	more	
in	Chapter	9.			
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Early	warning	of	spikes:		There	appears	to	be	a	distinctive	series	of	motions	that	
occurs	just	prior	to	the	outer	bob	of	the	double	pendulum	getting	very	near	the	top	
or	going	over	it.		(The	PE	of	the	bob	spikes	at	that	point.)		If	so,	looking	to	see	if	such	
motions	have	started	to	develop	might	provide	some	short-term	warning	that	this	
event	was	imminent.		The	height	of	the	bob	and	thus	its	PE	spikes	during	that	event	
so	this	suggests	a	potential	way	to	predict	otherwise	random	spikes,	albeit	only	a	
short	time	in	advance.			

Slide	1	provides	some	support	for	this	idea.	

Slide	118	Predic(on	in	
chao(c	systems	

With	good	model	short-
term	predic(on	is	possible	
even	if	ini(al	condi(on	not	
known	accurately.	
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All	these	screenshots	were	taken	during	a	single	run.		It	was	paused	whenever	the	
bob	looked	like	it	was	going	to	go	near	or	over	the	top	so	a	screenshot	showing	
blues	recent	trajectory	could	be	captured.		I	refer	to	the	blue	line.		During	this	
relatively	long	run	the	blue	bob	almost	went	over	the	top	six	times	but	fell	back.		
These	instances	are	shown	in	the	left	column.		The	right	column	shows	the	five	
instances	were	it	went	over.			

Slide	1	
Pre	OTT	warning?	
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Careful	inspection	shows	that	the	trail	or	trajectory	was	similar	in	every	case,	albeit	
with	subtle	differences.		In	short	there	was	a	distinctive	windup	before	each	pitch	
that	sent	the	blue	bob	near	or	over	the	top.			

This	situation	was	not	investigated	further.		It	may	or	may	not	happen	at	different	
energy	levels	within	the	double	pendulum.		It	may	or	may	not	happen	in	other	
chaotic	systems.			However	if	it	is	a	generalization	that	most	spikes	or	dramatic	
events	are	preceded	by	a	distinctive	windup	then	watching	for	them	to	start	
developing	may	provide	short-term	warning	the	dramatic	event	is	imminent.		

After	watching	the	double	pendulum	extensively	I	could	see	these	windups	
developing	with	little	difficulty.		I	suspect	some	type	of	pattern	recognition	software	
could	do	so	as	well.	

When	I	did	this	run	I	was	trying	to	see	if	the	windup	before	a	situation	where	the	
bob	almost	went	over	the	top	was	distinctively	different	from	situations	where	it	
actually	did	go	over.		I	couldn’t	tell	the	difference	by	eye	but	perhaps	software	could	
detect	subtle	differences.			

	

5.7		Long-term	prediction	is	not	possible	in	chaotic		
systems	

To	state	this	more	precisely	we	can’t,	even	roughly,	predict	the	value	of	some	
variable	at	some	specific	time	in	the	future	if	the	system	is	chaotic.		Experts	in	chaos	
theory	all	seem	to	agree	on	this	point.		They	make	it	often,	and	it	seems	to	be	the	
thing	they	think	most	important	to	say	about	chaos.	

Slide	111	demonstrates	that	this	is	clearly	true	for	the	double	pendulum.		
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These	runs	near	66	are	just	over	the	threshold	of	chaos	in	this	case.		Here	we	tested	
to	see	if	a	small	difference	in	initial	conditions	of	only	0.0001	degrees	would	affect	
downstream	waveforms,	and	it	certainly	did.		The	waves	were	virtually	identical	for	
the	first	100	seconds	but	sometime	later	they	began	to	diverge.			

The	lower	pair	of	screenshots	show	they	were	very	different	in	a	sample	from	t=188	
to	200.		Take	the	blue	waves	height	at	any	particular	time	and	compare	it	between	
the	run	at	66	degrees	and	the	run	at	66.0001	degrees.	I	call	the	differences	SDIC	

Slide	111	
SDIC	development	at	66	
degrees	with	delta	a1	of	only	
0.0001	degrees	

With	much	smaller	delta	in	ini?al	
condi?ons	it	took	longer	for	SDIC	effects	
to	become	evident.			
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effects	and	marked	some	with	red	arrows.	These	runs	are	clear	proof	this	system	
was	“sensitive	to	initial	conditions”	or	SDIC.		

The	image	below	taken	from	a	book	on	chaos	by	Baker	and	Gollub	shows	much	the	
same	thing	but	perhaps	more	clearly.	(Ca5,p.155)		It	apparently	applies	to	a	driven	
pendulum	and	compares	the	waveform	from	a	computer	forecast	with	the	actual	
one	from	a	real	physical	device.		I	added	the	color.		It	can	be	seen	how	the	
waveforms	diverged.		A	reasonably	accurate	forecast	could	be	made	for	the	period	
highlighted	in	green,	but	the	forecast	didn’t	match	reality	from	then	on	as	marked	by	
the	red	arrow.				

	

	

	

A	video	by	Stogatz	demonstrates	the	same	thing	more	viscerally,	albeit	with	a	much	
larger	difference	in	the	release	angel	since	he	couldn’t	position	them	to	within	
0.0001	degrees	of	each	other.		Go	t=	1:40	into	the	video	at:	
https://www.youtube.com/watch?v=anwl6OZ1UuQ&ebc=ANyPxKpVTVQJGdaxEk1
AvyBgCXkKdrV2SKjzJxpQGeBiMpxM3F4p8oCYU4_XDCVkTD1h_nlkssunljJ-
FHl56FRZdGc1wGEPWg	
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This	video	doesn’t	demonstrate	SDIC	since	the	two	pendulums	are	not	released	
together	but	they	have	very	low	friction	and	are	fun	to	watch:	
https://www.youtube.com/watch?v=N6cwXkHxLsU	
	
The	magnetic	pendulum	is	also	SDIC	as	shown	in	the	screenshot	below.		It	actually	
shows	the	paths	of	three	different	bobs	computed	as	thought	the	others	didn’t	exist.		
Although	released	from	almost	the	same	position	it	wasn’t	exactly	the	same	position	
so	their	paths	rapidly	diverged.		In	a	real	world	situation	we	wouldn’t	know	exactly	
where	the	bob	was	placed	before	release	so	would	be	unable	to	predict	its	future	
location.	
	

	
	
Note	that	in	this	run	the	bob	did	seem	to	start	diverging	from	the	very	start	in	
contrast	to	the	double	pendulum	runs	where	parts	only	diverged	visibly	after	some	
delay.			
	
(This	is	just	another	example	of	why	studying	chaos	is	so	difficult	and	why	its	so	
difficult	to	make	generalizations	that	apply	across	all	systems.		In	so	many	cases	
there	are	various	differences	and	surprises	in	behavior	between	different	examples.		
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Unless	one	explores	the	parametric	territory	very	thoroughly	and	carefully	they	
won’t	be	discovered.)	

 

5.8 Trying to predict the interaction of mega-trends may be 
useful 

As explained in Chapter 11 there are many difficulties in trying to apply lessons learned 
about toy systems to large real-world systems.  Nevertheless we must try or else all 
learned about toy systems has no practical value.  Here and in Chapter 11. I suggest that 
there may be practical benefit in trying to identify mega-trends in todays world and then 
considering how they may interact.  For instance the general increase in awareness due to 
TV and the internet is a world-wide mega trend in society.  Global warming is a mega-
trend.  Globalization and automation are mega-trends.  Such mega-trends may be just part 
of one wave or cycle in some system where mega-parts interact, but that’s not certain.  If 
true much work is needed to identify those mega-parts and how they interact.  We would 
need to model them as a dynamic system and see if and how they oscillate.  But ignoring 
that challenge for the moment I suggest it may be possible to create plausible scenarios 
that describe the combined result of several mega-trends acting together.  Would they 
reinforce each other in some way?  Would combining them, as society actually will, 
result in something surprising?  I feel such a scenario creation effort would be worthwhile 
and potentially very important.  I feel its one of the more tangible and potentially 
valuable ideas I’ve gotten during this research, even though it’s a bit different from the 
most of this. 	

	
5.9		Can	chaos	be	controlled?	

This	question	has	received	a	certain	amount	of	expert	research.		The	general	idea	
has	been	to	take	advantage	of	SDIC	so	small	changes	made	now	to	a	system	can	
magnify	and	have	large,	and	presumably	beneficial,	effects	downstream.		For	
instance	could	some	modest	economic	policy	or	intervention	made	now	prevent	a	
future	depression.		I’ve	not	had	time	to	research	this	area	but	will	offer	a	couple	
comments.			

First,	the	system	must	be	chaotic,	and	we	must	have	a	good	simulation	model	to	test	
potential	remedies.	
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Second,	since	SDIC	does	amplify	small	perturbances	there	is	a	good	chance	that	
some	other	unanticipated	trend	or	event	coming	from	outside	will	cancel	out	the	
well-intended	intervention	or	even	make	the	situation	worse.		Chapter	8	discusses	
how	no	system	exists	in	isolation	so	outside	disturbances	are	a	certainty	and	even	
the	weakest	will	be	magnified,	per	the	classic	butterfly	effecting	the	weather	story.		
The	as	we	get	closer	to	some	undesirable	situation	like	a	depression	it	takes	more	
and	more	power	(or	money)	to	prevent	it.		The	same	would	apply	in	the	double	
pendulum,		If	we	wanted	the	arms	to	be	straight	down	at	time	X	a	small	intervention	
made	well	in	advance	could	make	that	happen	do	to	the	magnifying	power	of	SDIC.		
On	the	other	hand	if	we	delay	and	they’re	not	in	the	right	position	shortly	before	
time	X	it	would	take	a	strong	force	to	move	them	there.	

	
	
5.10		Why	study	chaos?			

After	trying	to	understand	chaos	so	long	its	necessary	to	step	back	and	ask	if	
anything	new	and	practical	has	been	learned	that	would	allow	us	to	better	
understand,	manage	or	cope	with	important	real-world	systems	like	environment	or	
government.		Here	are	some	thoughts.	

From	an	observation	of	past	behavior	we	already	know	what	real-world	systems,	
like	weather	and	economy,	are	acting	chaotically	and	that	we	should	be	prepared	for	
random	spikes	or	calms	in	their	behavior.		And	we	know	that	short-term	prediction	
is	possible	in	some	cases	but	long-term	prediction	isn’t.		But	we,	and	experts	in	the	
relevant	disciplines,	already	know	that	so	nothing	new	is	added	except	perhaps	for	a	
better	theoretical	understanding	of	why;	namely	that	n-body	systems	and	fluids	can	
oscillate	chaotically.	

The	notion	that	SDIC	might	allow	us	to	prevent	future	disasters	by	making	small	
interventions	well	in	advance,	while	theoretically	true,	is	useless	because	unknown	
outside	disturbances	would	interfere.			It’s	nice	to	save	money	by	knowing	in	
advance	that		such	interactions	might	not	work,	but	it’s	a	negative	conclusion	saying	
more	about	what	we	can’t	do	than	what	we	can	do.	

It	does	not	seem	worthwhile	to	determine	if	some	slowly	oscillating	real-world	
system	now	operating	quasi-periodically	might	suddenly	cross	the	threshold	and	
become	chaotic	because	its	short-term	behavior	apparently	wouldn’t	change	much.	
At	least	that’s	what	the	data	above	suggests.		Slowly	oscillating	systems	like	for	
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instance	climate	change	so	slowly	that	we	will	live	through	only	a	fraction	of	one	
cycle	of	oscillation.		Thus	what	happens	after	many	cycles	is	of	little	concern.			

The	knowledge	that	no	system	exists	in	isolation	greatly	complicates	any	attempt	to	
apply	lessons	about	isolated	toy	systems	toward	understanding	large	complex	real	
world	systems.	

Does	it	make	any	practical	difference	whether	a	real	world	system	is	PP	quasi	or	
chaotic?		Maybe	not.			We	already	know	by	observation	which	real-world	systems	
appear	to	be	chaotic	and	experts	in	those	areas	have	already	tried	with	various	
degrees	to	success	to	predict	their	behavior.			Knowing	that	a	slowly	oscillating	(one	
cycle	takes	years	or	decades)	system	is	PP	or	quasi	would	not	be	important	if	its	
near	the	the	threshold	and	could	soon	go	over	because	the	waveform	does	not	seem	
to	change	much.		It	just	continues	to	oscillate	but	now	its	SDIC.		It	might	be	
important	in	rapidly	oscillating	systems	because	it	would	bring	those	random	calms	
and	spikes.		It	may	matter	if	a	system	is	near	the	threshold	of	experiencing	what	I’ve	
called	dramatic	events	or	qualitative	changes	in	behavior	since	that	might	
immediately	impact	not	only	the	system	itself	but	also	anything	dependent	on	it.		

	
5.11		Its	difficult	to	relate	toy	system	findings	to	real-world	
systems	
	
Experts	in	many	fields	have	become	aware	of	chaos	theory	and	sought	to	see	if	and	
how	it	might	apply	in	systems	in	their	disciplines.		I’ve	only	had	time	to	look	briefly	
at	a	few	of	these	and	mention	some	in	Chapter	12.	
	
However	Its	difficult	to	relate	toy	system	findings	to	real-world	systems	for	a	
variety	of	reasons.		These	are	the	ones	I’ve	discovered,	although	others	have	
undoubted	discovered	them	also.		They	are	discussed	in	more	detail	in	Chapter	11.	
but	here	are	the	main	points.	
	

1)		Its	difficult	to	identify	in	real	world	systems	“parts”	that	are	equivalent	to	
the	discrete	physical	parts	in	most	of	these	toy	systems.			
	
2)	It	difficult	to	identify	for	real	world	systems	an	equivalent	to	the	potential	
and	kinetic	energy	that	exists	in	toy	systems	and	determines	their	behavior.		
Is	money	the	equivalent	of	energy	in	economic	systems?	
	
3)	It	difficult	to	identify	in	real	world	system	equivalents	for	the	physical	
forces	between	the	parts.		In	toy	systems	the	forces	are	gravity	or	
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electromagnetic.		What	are	their	equivalents	in	economic,	political,	
ecological,	and	social	systems?	
	
4)	Oscillation	only	occurs	because	parts	have	mass	and	thus	inertia.		What	is	
the	equivalent	of	mass	in	the	above	mentioned	systems?		(It	obviously	exists	
because	real	world	systems	always	seem	to	react	slowly	to	applied	forces.)			
	
5)		No	real	world	system	exists	in	isolation	immune	from	the	influence	of	
other	parts	and	systems	in	the	overall	environment.			
	
6)		Many	real	world	systems	are	not	comprised	of	a	relative	few	discrete	
parts	like	the	toy	systems	analyzed	in	this	book	but	rather	have	so	many	
parts	that	they	may	behave	more	like	fluids	and	gases.		

	
	
As	we	look	at	progress	in	linking	toy	systems	to	real	world	behavior	the	general	
questions	would	seem	to	come	in	this	order:			
	

1)	Is	some	variable	oscillating	chaotically?	
2)	Is	this	waveform	the	result	of	an	internally	oscillating	system	or	the	result	
of	random	and	possibly	one-time	disturbances	from	outside?			
3)	Can	we	identify	the	interacting	parts,	forces,	energies,	links?	
4)	Can	we	build	a	simulation	model	that	at	least	roughly	replicates	the	
systems	behavior?	
5)	Can	extreme	events	be	predicted	well	enough	in	advance	so	we	can	better	
prepare	for	them?	
6)		Is	something	happening	(like	global	warming)	that	might	change	the	
system’s	behavior	in	a	significant	way?	Would	it	be	a	sudden	or	gradual	
change?		Can	that	something	be	stopped?	
7)	Can	any	deleterious	behavior	that	is	forecast	with	the	model	be	
prevented?		
	

Unless	we	can	answer	“yes”	to	the	last	three	questions	nothing	practical	has	been	
learned.	
	
A	bridging	model	is	needed:		As	mentioned	elsewhere	small	toy	systems	with	just	
a	few	parts	are	much	different	than	real-world	systems	with	many	parts.		Thus	we	
need	to	study	systems	with	at	least	6	parts	to	see	if	lessons	learned	from	the	double	
and	magnetic	pendulum	and	the	Logistics	equations	apply	to	larger	systems.		Then	
we	should	look	at	systems	with	say	20	parts.		I	have	described	the	a	model	to	
facilitate	such	experiments	in	Chapter	11.		
	
	
5.12		Definition	of,	criteria	for,		and	root	cause	of	chaos	are	
not	sufficiently	understood	
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Definition:		According	to	Strogatz	there	is	no	universally	accepted	definition	of	
chaos.	However	he	offers	the	following.		

“Chaos	is	aperiodic	long-term	behavior	in	a	deterministic	system	that	
exhibits	sensitive	dependence	on	initial	conditions”	(Ca2,	p.323)	

Here	is	what	Wikipedia	says	by	way	of	definition:		

“Although no universally accepted mathematical definition of chaos exists, a 
commonly used definition originally formulated by Robert L. Devaney says that, for a 
dynamical system to be classified as chaotic, it must have these properties:[12] 

1. it must be sensitive to initial conditions 
2. it must be topologically mixing 
3. it must have dense periodic orbits 

In some cases, the last two properties in the above have been shown to actually imply 
sensitivity to initial conditions.[13][14] In these cases, while it is often the most 
practically significant property, "sensitivity to initial conditions" need not be stated in 
the definition.” https://en.wikipedia.org/wiki/Chaos_theory 

Here’s	another	from	Math	Insight:		

“A	dynamical	system	exhibits	chaos	if	it	has	solutions	that	appear	to	be	quite	
random	and	the	solutions	exhibit	sensitive	dependence	on	initial	conditions.”	
http://mathinsight.org/definition/chaos	

One	of	the	best	plain	English	descriptions	of	chaos	I’ve	found.		Includes	discussion	of	
its	definition:	http://plato.stanford.edu/entries/chaos/#DefCha	
	
NOTE:	These	all	describe	the	symptoms	of	chaos.		None	allude	to	the	root	cause.		In	
my	view	a	better	definition	would	say	something	like:		“a	randomly	changing	
oscillation	with	SDIC	that	occurs	because	of	X,	Y	and	Z.	“		

Criteria	for:		Chaos	is	a	very	complex	topic	so	its	with	trepidation	I	offer	the	
following	comment.		I’ve	not	seen	a	nice	list	of	criteria	for	what	makes	a	system	
chaotic	or	makes	it	capable	of	becoming	chaotic	if	the	energy	is	raised	enough.		N-
body	theory	suggests	to	me	that	any	system	comprised	of	three	or	more	parts	linked	
with	non-linear	forces	is	always	chaotic	regardless	of	energy	level.		In	other	words	
that	criterion	alone	is	sufficient.		On	the	other	hand	maybe	such	systems	are	only	
chaotic	at	and	above	certain	energy	levels.			What	I’ve	read	about	the	three-body	
problem	suggests	the	former.		My	work	with	the	double	pendulum	favors	the	latter.			
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Root	cause:		Nowhere	in	all	the	technical	literature	I’ve	read	have	I	ever	seen	an	
explanation	for	the	root	cause	of	chaos.		I	think	it’s	actually	fairly	simple,	but	so	
subtle	no-ones	discovered	it.		I	say	that	based	on	my	study	of	the	double	pendulum.		
It	all	must	come	down	to	how	the	two	arms	physically	interact.		We	can	measure	all	
the	variables	and	how	they	interact	so	it	seems	we	should	be	able	to	identify	what	
changes	when	it	becomes	chaotic.		And	do	so	in	a	qualitative	intuitive	manner	
without	resort	to	mathematics.		I	admit	that’s	just	opinion.			

Nevertheless	in	Chapter	9	I	offer	some	ideas	about	how	one	might	find	the	root	
cause	of	chaos	in	the	double	pendulum.		It	comes	down	to	finding	the	root	cause	of	
SDIC	by	comparing	waveforms	and	forces	just	above	and	below	that	threshold.		
Little	or	no	math	should	be	needed	to	do	this.		I	also	offer	a	weaker	explanation	for	
why	behavior	of	the	magnetic	pendulum	is,	or	seems	to	be,	always	aperiodic.			

Comparative	mapping:			Another	opinion	is	that	more	work	needs	to	be	done	to	
fully	map	the	behavior	of	a	number	of	different	toy	systems	and	then	compare	them	
in	order	to	get	insights	into	root	causes.		By	mapping	I	mean	making	runs	with	many	
different	sets	of	initial	conditions	–especially	different	energy	levels-	and	plotting	
waveforms	and	phase	space	plots.		I	would	for	instance	like	to	turn	up	the	energy	
dial	in	a	series	of	double	pendulum	simulations	and	create	a	movie	of	how	the	phase	
space	plot	morphs.		I	expect	it	to	show	if	a	strange	attractor	is	present	and	if	so	
whether	it	narrows	to	a	line	when	the	system	becomes	perfectly	periodic.		I’d	also	
like	to	see	bifurcation	diagrams	for	all	the	toy	systems,	not	just	the	Logistics	
equation.			

		

5.13	Other	points			

1)	In	two	series	of	runs	the	double	pendulum	oscillated	perfectly	periodically	just	
before	crossing	the	threshold	and	becoming	chaotic.		This	is	probably	significant	
and	needs	more	study.	

2)	I	never	found	period	doubling	in	the	double	pendulum.		It	was	usually	quasi-
periodic	even	at	very	low	energy	levels.	Someone	else	should	double	check.	

3)		Since	I	did	not	conduct	a	full	closely	spaced	series	of	runs	from	low	to	high	
energy	there	are	likely	other	instances	where	the	system	oscillated	perfectly	
periodically,	including	maybe	some	in	the	chaotic	realm	(as	suggested	by	the	bi-
furcation	diagram	for	the	Logistics	equation.)	
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4)	All	my	double	pendulum	research	was	done	using	one	simulation	model.		My	
results	should	be	confirmed	using	a	different	model.					

	


